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We propose a method for estimating nonlinear interdependences between time series using cellular nonlinear
networks. Our approach is based on the nonlinear dynamics of interacting nonlinear elements. We apply it to
time series of coupled nonlinear model systems and to electroencephalographic time series from an epilepsy
patient, and we show that an accurate approximation of symmetric and asymmetric realizations of a nonlinear
interdependence measure can be achieved, thus allowing one to detect the strength and direction of couplings.
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I. INTRODUCTION

Synchronization phenomena play an important role in
nearly all fields of science, including physics, chemistry,
economy, biology, and neurosciences �see Refs. �1,2� for an
overview�. The human brain can be regarded as a prominent
example in which different forms of synchronization can be
observed. From neurophysiology it is known that interac-
tions between specific regions of the brain are responsible to
ensure the normal functioning of the brain �3�. A substantial
change in these interactions may give rise to certain malfunc-
tions of the brain such as Parkinson’s disease or ataxia. A
malfunction of the brain that is known to be particularly
associated with a pathological increase in synchronization is
the disease epilepsy along with its cardinal symptom, the
epileptic seizure. Led by a growing interest in the possibility
of seizure prediction, research over the last years has shown
that the analysis of synchronization phenomena in the epi-
leptic brain can contribute significantly to this field �see Ref.
�4� for an overview�. In contrast to previously used—mostly
linear and nonlinear univariate—time-series analysis ap-
proaches, a significant predictive performance above chance
level can be achieved for different measures of synchroniza-
tion �5–8�. This interest has also been facilitated by the fact
that measurements of the electrical activity of brain neural
networks are readily available in the form of the electroen-
cephalogram �EEG� measured by electrodes placed on the
surface of or even within the skull. In current clinical or
neuroscientific settings the number of sensoring electrodes
typically ranges between 100 and 200. Bivariate analyses of
synchronization phenomena require computational resources
that grow quadratically with the number of channels, which
limits real-time applications to a certain extent.

Artificial neural networks �ANNs� are computational tools
that have found extensive utilization in solving complex real-
world problems. The attractiveness of ANNs comes from
their information-processing characteristics such as intrinsic
nonlinearity, high parallelism, and fault and noise tolerance.
More importantly, neural networks are able to learn a rule

from a set of examples �9� and, after successful supervised or
unsupervised learning, are capable of generalization. ANNs
have already been successfully applied to model, to generate,
or to predict time series, including chaotic ones �10–20�.
Nevertheless, since a conventional �i.e., von Neumann� com-
puter architecture is not well suited to simulate large-scale
neural networks, there is the need for a special parallel ar-
chitecture that even allows mobile field applications. Cellular
nonlinear networks �CNNs� �21,22� combine the architecture
of cellular automata and neural networks. A CNN is an array
of locally coupled nonlinear electrical circuits or cells, which
is capable of processing a large amount of information in
parallel and in real time. Interactions between the cells of a
CNN are only local and usually translation invariant; i.e., a
connection from a cell j toward another cell i only exists if j
is part of i’s neighborhood U�i� and its type and strength
depend only on the relative position of j with respect to i.
Thus the number of connections increases only linearly with
the number of cells, a property that already enabled hardware
realization of CNNs �e.g., very-large-scale integrated imple-
mentations �VLSIs� �23–25��, as opposed to other types of
ANNs. Recent studies showed that a sufficient estimation of
characterizing measures �26–29�, including measures for
phase synchronization �30�, can be achieved using CNNs.

We here show that the approach of analyzing the dynam-
ics of interacting complex systems with the nonlinear dy-
namics of interacting nonlinear elements can also be ex-
tended to the concept of generalized synchronization
�31–34�. Among the many time-series analysis techniques
that have been proposed to measure generalized synchroni-
zation �33–36�, estimates for nonlinear interdependences
�37,38� turned out to be the most reliable way of assessing
the extent of generalized synchronization in field applica-
tions �38–42�. With this approach the existence of a func-
tional relation between two systems is not assumed and in-
terdependences are quantified by evaluating how
neighborhoods �i.e., recurrences� in one reconstructed state
space map into the other. Measures for nonlinear interdepen-
dence are generally asymmetric which, in principle, provide
a means to detect driver-responder relationships by identify-
ing the more active system.

This article is organized as follows. In Sec. II A we briefly
recall the definitions for the nonlinear interdependence mea-
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sure N. The methods used to approximate N with a cellular
nonlinear network are presented in Sec. II B. In Sec. III we
show the results of our application to time series from model
systems and to multiday EEG time series from an epilepsy
patient, before we draw our conclusions in Sec. IV.

II. METHODS

A. Measuring nonlinear interdependence

Following Refs. �37,38� the nonlinear interdependence N
is defined as follows. Given two dynamical systems V and
W, let vn= �vn , . . . ,vn−�m−1�d� and wn= �wn , . . . ,wn−�m−1�d�, n
=1, . . . ,K, denote their reconstructed delay vectors in state
space �43�, where m denotes the embedding dimension and d
the time delay. Let rn,j and sn,j , j=1, . . . ,k, denote the time
indices of the k nearest neighbors of vn and wn, respectively.
For each vn, the mean-squared Euclidean distance to its k
neighbors is denoted by

Rn
�k��V� =

1

k
�
j=1

k

�vn − vrn,j
�2. �1�

In addition, the W-conditioned mean-squared Euclidean
distance is derived by replacing the nearest neighbors by the
equal-time partners of the closest neighbors of wn:

Rn
�k���V�W� =

1

k
�
j=1

k

�vn − vsn,j
�2. �2�

The nonlinear interdependence measure N is defined as

N�k���V�W� =
1

K
�
n=1

K
Rn�V� − Rn

�k���V�W�
Rn�V�

, �3�

where

Rn�V� =
1

K − 1 �
j�n

�vn − v j�2 �4�

denotes the mean distance of vn to all other vectors in state
space. Low values of N�k��V �W� indicate independence be-
tween systems V and W �note that slightly negative values
are possible�, whereas N�k��V �W�→1 for identical systems.
The opposite interdependence N�k��W �V� is defined in
complete analogy. As N�k��W �V� in general is not equal to
N�k��V �W�, this asymmetry can be exploited to obtain infor-
mation about driver-responder relationships. We here quan-
tify the degree of generalized synchronization by

Ns
�k� =

N�k���V�W� + N�k���W�V�
2

�5�

and the asymmetry by

Na
�k� =

N�k���V�W� − N�k���W�V�
2

. �6�

For the latter positive �negative� values can indicate
driver-responder relationships �with V being the driver �re-
sponder� and W being the responder �driver�� and thus can

yield information about directionality of coupling between V
and W in a sense that one system can be interpreted as more
active than the other. If not stated otherwise, we used k=6
nearest neighbors �44,45� in our simulations and substitute
Ns

�6� by Ns and Na
�6� by Na.

B. Estimating nonlinear interdependence with cellular
nonlinear networks

Since the general concepts for a CNN-based estimation of
a �univariate or bivariate� characterizing measure have been
described in detail in Refs. �28–30�, we here give only a
brief account on the applied methodological steps. We con-
sider a CNN which consists of a two-dimensional Mx�My
homogeneous lattice of cells with local nonlinear interac-
tions. The corresponding state equation for cell �i , j� reads

d

d�
�i,j��� = − �i,j��� + �

k,l�UA

Ak,l„�i−k,j−l���…

+ �
k,l�UB

Bk,l��i−k,j−l� + Z , �7�

where �i,j��� denotes the state variable of cell �i , j� and
�k,l��� the output variable of cell �k , l� according to

�k,l��� = f„�k,l���… =
2

1 + e−4�k,l��� − 1, �8�

given an external input variable �k,l as well as feedback and
feed-forward template functions Ak,l and Bk,l �with spheres of
influence k , l�UA or �UB�, respectively. Z denotes a global
cell bias. The template function A operates on the outputs of
cell �k , l� and the template function B operates on the exter-
nal inputs in the neighborhood of cell �k , l�. Both templates
and the cell bias Z have to be determined �e.g., by some
learning algorithm� to achieve the desired CNN behavior. In
order to determine an appropriate CNN with cell outputs
showing the behavior of the nonlinear interdependences Ns
and Na, we performed all simulations using a full feature
simulation system �cf. Ref. �46��. We restricted ourselves to a
quadratic network arrangement �Mx=My� with a minimum
possible 3�3 neighborhood size as well as to polynomial-
type template functions

Ak,l
�P���� = �

p=1

P

ak,l
�p��p,

Bk,l
�Q���� = �

q=1

Q

bk,l
�q��q, �9�

of order P=Q=3. We used the so-called closed spiral bound-
ary condition where all boundary cells are connected to the
other side of the network, but the connection has an offset of
1 for each row. In order to present the time series to the
network, we used a line wise alignment �i.e., the rightmost
cell in a row is connected to the leftmost cell in the following
row� of the time series, where time series vn, n=1, . . . ,J, was
assigned to the input � and wn to the initial state ��0� of the
CNN �28–30�. Together with the chosen boundary condition
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this alignment preserves the temporal order of the time se-
ries. Following Ref. �46� simulations were performed not up
to a steady state �i.e., ����→�����, but up to some fixed
transient time �trans. For this purpose we integrated Eq. �7�
using Euler’s method with a step size of h=0.2 and 100
integration steps resulting in a transient time �trans=20.

In order to train the network we randomly selected L rep-
resentative pairs of time series �see Sec. III� along with their
corresponding values of the nonlinear interdependences Ns
�and Na� �see Sec. II A�. Half of these values were taken
from the interval �Ns

low−�low,Ns
low+�low� representing weakly

dependent time series. The other half was from the interval
�Ns

high−�high ,Ns
high+�high� representing stronger dependent

time series. �low and �high adjust the size of the intervals such
that Ns values from at least L

2 time series are confined to
these intervals. The desired output �Ref was set to +1 for
Ns

high and to −1 for Ns
low. Selections and assignments for Na

are defined in complete analogy. Na
low indicates no asymme-

try and �Na
high� indicates a driver-responder relationship.

After choosing random initial values for the components
of templates A and B and for the global cell bias Z the fol-
lowing cost function was minimized iteratively using an
evolutionary optimization algorithm �population size 50; sur-
vivors 10; immigrants per generation 10; iteration steps
30 000� �47–49� and our distributed computing system �50�:

	 =
1

L
�
l=0

L−1 � 1

4MxMy
�
m=0

MxMy−1

��m,l��trans� − �l
Ref�2� . �10�

The approximated nonlinear interdependence Ns
CNN is de-

fined as

Ns
CNN = �Ns

high − Ns
low

MxMy
�
m=0

MxMy−1
�m��trans� + 1

2
� + Ns

low.

�11�

Na
CNN is defined in complete analogy.

III. APPLICATIONS

We start by applying our CNN-based approach to ap-
proximate nonlinear interdependences from time series of
exemplary model systems in order to test our method on
well-known experimental setups. For the basic CNN struc-
ture we restricted ourselves to parameters specified by al-
ready available CNN hardware realizations �51,52�. We stud-
ied coupled systems with similar dynamics as well as
coupled structurally different dynamical systems, which al-
lowed us to simulate the different situations which might
occur when analyzing field data. We employed unidirectional
or bidirectional diffusive couplings and varied the coupling
strength 
 such as to cover the range from no synchronization
to full synchronization. For each coupling strength we gen-
erated 20 realizations �taking randomly chosen points in the
state spaces near the systems’ attractors as initial conditions
for the differential equations� and calculated Ns and Na ac-
cording to Eqs. �5� and �6�. We linearly mapped the ampli-
tude range of the normalized �zero mean� time series to the
CNN range of �−1,1�. For each setup we then compiled a

training set consisting of L=10 pairs of time series along
with their corresponding values of the nonlinear interdepen-
dences �see Sec. II B�, which we used for an in-sample op-
timization of our CNN. With the remaining Lw=20n
−L
pairs of time series we performed an out-of-sample valida-
tion of our approach, quantifying the goodness of our CNN-
based approximation of strength and direction of interdepen-
dence by

�s =
1

Lw
�
i=0

Lw−1

�Ns
CNN�i� − Ns�i�� ,

�a =
1

Lw
�
i=0

Lw−1

�Na
CNN�i� − Na�i�� , �12�

and by calculating the Spearman rank-order correlation co-
efficient � between the Ns,a

CNN and Ns,a values from the respec-
tive realizations.

A. Model systems with similar dynamics

Our first example is given by coupled Rössler dynamics:

ẋ1 = − �1y1 − z1 + 
21�x2 − x1� ,

ẏ1 = �1x1 + 0.165y1,

ż1 = 0.2 + z1�x1 − 10� ,

ẋ2 = − �2y2 − z2 + 
12�x1 − x2� ,

ẏ2 = �2x2 + 0.165y2,

ż2 = 0.2 + z2�x2 − 10� , �13�

with a slight mismatch of the natural frequencies �1=0.89
and �2=0.85. Equations �13� were integrated using a stan-
dard fourth-order Runge-Kutta routine with a step size of
0.1. In order to eliminate transients the first 103 iterations
were discarded.

For evaluating the symmetric nonlinear interdependence
Ns we increased the coupling strength 
=
12=
21 �bidirec-
tional coupling� between 0
0.04 in n
=41 steps ��

=0.001� and generated time series of the x components of the
systems consisting of J=4096 data points each. For each
coupling strength we calculated Ns using an embedding di-
mension of m=7 �53� and a time delay of d=14, which ap-
proximately corresponds to the decorrelation times of the
systems �54�. Given the number of data points we used a
CNN with Mx=My =64 cells �51� and assigned the x compo-
nent of the first system to the CNN input � and the x com-
ponent of the second system to the initial state ��0� �cf. Eq.
�7��. For the in-sample optimization of the CNN we com-
piled a training set, which consisted of L=10 randomly se-
lected pairs of time series along with their respective Ns val-
ues taken from the intervals defined by Ns

low=0 with �low

=0.08 and by Ns
high=0.9 with �high=0.07. We obtained 	

=3.374�10−3.
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The results of an out-of-sample validation are shown in
Fig. 1 �upper panel� where we plot the dependence of Ns and
of Ns

CNN on the coupling strength 
. These findings indicate
that our CNN allows one to approximate the symmetric non-
linear interdependence Ns with a sufficient accuracy ��s
=0.13, �=0.66, p�0.001�. We observed a slightly delayed
increase of Ns

CNN in the range 0.02�
�0.03. The larger
variance of Ns

CNN may reflect the cells’ tendency toward
maximum �Ns

high� or minimum values �Ns
low� due to the sig-

moidal output function �cf. Eq. �8��.
For evaluating the asymmetric nonlinear interdependence

Na we set 
21=0 �unidirectional coupling with system 1 be-
ing the driver� and increased the coupling strength 
=
12
between 0
0.2 in n
=41 steps ��
=0.005�. For each
coupling strength we calculated Na using embedding param-
eters as before. We proceeded as described above but com-
piled another training set that consisted of L=10 randomly
selected pairs of time series along with their respective Na
values taken from the intervals defined by Na

low=−0.05 with
�low=0.05 and by Na

high=0.33 with �high=0.02. We obtained
	=0.082 for the in-sample optimization.

The results of an out-of-sample validation are shown in
the lower panel of Fig. 1 and indicate that, overall, our CNN
also allows one to approximate the asymmetric nonlinear
interdependence Na with a sufficient accuracy ��a=0.09, �
=0.74, p�0.001�. Particularly in the range of weak cou-
plings �0.025�
�0.15� Na

CNN allows one to identify the
driving system.

B. Structurally different dynamical model systems

Our second example is given by unidirectionally coupled
Rössler �driver� and Lorenz �responder� dynamics:

ẋ1 = − 0.89y1 − z1,

ẏ1 = 0.89x1 + 0.165y1,

ż1 = 0.2 + z1�x1 − 10� ,

ẋ2 = −
8

3
x1 + y1z1 + 
�x1 − x2� ,

ẏ2 = 28z2 − y2 − x2z2,

ż2 = 10�y2 − z2� . �14�

The equations of motion were integrated using a standard
fourth-order Runge-Kutta routine with a step size of 0.01. In
order to eliminate transients the first 104 iterations were dis-
carded. We increased the coupling strength between 0.6

2.4 in n
=45 steps ��
=0.04� and generated time series of
the systems consisting of J=16 384 data points each. For
each coupling strength we calculated Ns and Na using an
embedding dimension of m=5 �44� and, given the different
characteristic recurrence times of the systems, a minimum
possible time delay d=1. Given the number of data points
we used a CNN with Mx=My =128 cells �52� and assigned
the x component of the driver to the CNN input � and the y
component of the responder to the initial state ��0� �cf. Eq.
�7��.

For evaluating the symmetric nonlinear interdependence
Ns we compiled a training set of L=10 randomly selected
pairs of time series along with their respective Ns values
taken from the intervals defined by Ns

low=0 with �low=0.02
and by Ns

high=0.65 with �high=0.02. For the in-sample opti-
mization we obtained 		0, indicating a perfect performance
for this training set. The out-of-sample validation �see upper
panel of Fig. 2� shows that our CNN allows one to approxi-
mate the dependence of Ns on 
 also for structurally different
systems with a sufficient accuracy ��s=0.11, �=0.75, p
�0.001�.

For the asymmetric nonlinear interdependence Na we
compiled a training set of L=10 randomly selected pairs of
time series along with their respective Na values taken from
the intervals defined by Na

low=−0.1 with �low=0.01 and by
Na

high=0.35 with �high=0.15. For the in-sample optimization
we obtained 	=0.137, but the out-of-sample validation ��a
=0.046, �=0.36, p�0.001� indicated a sufficient approxima-
tion �as shown in the lower panel of Fig. 2�. Interestingly, for
uncoupled systems and when the systems begin to synchro-
nize we now obtained an almost perfect approximation of Na.
Again in the range of weak couplings �0.8�
�1.1�, Na

CNN

allows one to identify the driving system.
Summarizing this section, we conclude that our CNN al-

lows one to approximate both symmetric and asymmetric
nonlinear interdependences with a sufficient accuracy. Tak-
ing into account the rather limited range of both Ns and Na
values used for optimizing the CNN and the small number of
data points the time series consisted of, we regard the
achieved approximation accuracy as sufficiently good, par-
ticularly for field applications. Such an application that aims

FIG. 1. Top: means and standard deviations of the calculated
�Ns� and approximated �Ns

CNN� symmetric nonlinear interdepen-
dence for coupled Rössler systems using different coupling strength

. Bottom: same as above but for the asymmetric nonlinear interde-
pendence �Na and Na

CNN�.

KRUG et al. PHYSICAL REVIEW E 76, 041916 �2007�

041916-4



at differentiating between strong and only weak interactions
will be presented in the next subsection.

C. EEG data

We analyzed a multichannel EEG that was recorded for a
period of 5 days from an epilepsy patient. The patient had
signed informed consent that the clinical data might be used
and published for research purposes. The study protocol had
previously been approved by the ethics committee of the
University of Bonn. The patient had ten epileptic seizures of
focal origin occurring spontaneously within the second half
of the recording period. The EEG was measured from elec-
trodes implanted directly within the brain prior to and inde-
pendently from the design of this study during the presurgi-
cal work-up. EEG data were sampled at 200 Hz using a 16-
bit analog-to-digital converter and filtered within a frequency
band of 0.5–85 Hz. We here restrict ourselves to the analysis
of EEG data from two sets �P1 , P2� of pairs of recording
channels. Previous studies �5,30� have shown that the tem-
poral evolution of measures characterizing the strength of
synchronization �including Ns� calculated for set P1 exhib-
ited highest seizure prediction performance. We here re-
peated the analyses presented in Ref. �5� for the asymmetric
nonlinear interdependence Na and assigned to set P2 the pair
of recording channels for which Na exhibited highest seizure
prediction performance. We note that the identified channels
in sets P1 and P2 are not identical but are confined to the
same brain region �medial temporal lobe�.

Due to the high amplitude variability of the EEG, we
linearly mapped, as an additional preprocessing step, the am-
plitude range of �−150,150� mV of the normalized �zero

mean� EEG to the CNN range of �−1,1�. Ns and Na values
were then calculated �see Sec. II A� using a moving-window
technique with nonoverlapping segments of 20.48 s corre-
sponding to J=4096 data points. We followed Ref. �37� and
used an embedding dimension of m=10, a time delay of d
=25, and k=10 nearest neighbors. The number of Ns

�10� and
Na

�10� values for each set amounted to 18 735.
We compiled two training sets �one for P1 and one for P2�

by randomly selecting L=16 EEG segments along with their
corresponding Ns

�10� and Na
�10� values using criteria defined in

Sec. II B, but without knowledge of the actual patient’s state
�awake, asleep, seizure activity, pre- or post-seizure activity,
etc.�. For evaluating the symmetric nonlinear interdepen-
dence we used Ns

�10� values from the intervals defined by
Ns

low=0.3 with �low=0.01 and by Ns
high=0.85 with �high

=0.01 and obtained 	=0.017 for the in-sample optimization.
For the asymmetric nonlinear interdependence we used Na

�10�

values from the intervals defined by Na
low=−0.14 with �low

=0.04 and by Na
high=0.15 with �high=0.03. The in-sample op-

timization yielded 	=0.102.
The obtained CNN settings for P1 and P2 were then used

to calculate Ns
CNN and Na

CNN for the test sets, which consisted
of the remaining 18 719 time series pairs. For the symmetric
nonlinear interdependence we observed that the CNN pro-
duced Ns

CNN that were constantly lower than the correspond-
ing Ns

�10� values but the overall temporal variability is repro-
duced with a sufficient quality. We therefore performed an
offset correction by adding a constant value �= 
Ns

�10��t

− 
Ns
CNN�t�0.16 �
·�t denotes the temporal average� to all

Ns
CNN values before quantifying the goodness of our CNN-

based approximation, which yielded �s=0.06 ��=0.79; p
�0.001�. In Fig. 3 we present the temporal evolution of the
calculated and the approximated symmetric nonlinear inter-
dependences. For the asymmetric nonlinear interdependence
no offset correction was necessary, and in Fig. 4 we present
the temporal evolution for this measure. Here the out-of-
sample validation yielded �a=0.033 ��=0.50, p�0.001�. Al-
though both Ns

CNN and Na
CNN exhibited a higher variance, the

overall temporal variability of the nonlinear interdependence
is reproduced with a sufficient quality, despite the extremely
small subset of data used to train the network �a recording
time of about 330 s only�.

In order to assess the suitability of our CNN-based ap-
proach for a possible application in seizure prediction stud-
ies, we evaluated the success of predictions �in terms of
sensitivity and specificity� via a receiver-operating character-
istics �ROC� statistic �55,56�. Following Ref. �5� we assumed
that for each of the ten seizures a preseizure state with a
duration of 4 h exists. Using ROC, we compared the fre-
quency distributions of the symmetric nonlinear interdepen-
dence values from the preseizure states and from the seizure-
free interval �excluding data from the seizure states and from
the 30 min following the seizures�. Our CNN-based ap-
proach yielded a prediction performance of ROC�0.74,
which was lower than for the calculated nonlinear interde-
pendence �ROC�0.83�. Given the observed higher variance
of the CNN-based estimates, this deviation was to be ex-
pected to some extent. The achieved performance, however,
can still be regarded as promising and indicates that a differ-

FIG. 2. Top: means and standard deviations of the calculated
�Ns� and approximated �Ns

CNN� symmetric nonlinear interdepen-
dence for coupled Rössler �driver� and Lorenz �responder� systems
using different coupling strengths 
. Bottom: same as above but for
the asymmetric nonlinear interdependence �Na and Na

CNN�.
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entiation of preseizure states from the seizure-free interval is
in principle possible using our CNN-based approach.

IV. CONCLUSIONS

We have shown that cellular nonlinear networks are well
suited to identify different aspects of generalized synchroni-
zation from a pair of measured time series. Both a symmetric
and an asymmetric measure for nonlinear interdependence
�Ns, Na� could be approximated with a sufficient accuracy
using the nonlinear dynamics of interacting nonlinear ele-
ments. Applying this concept to time series of coupled non-
linear model systems and to electroencephalographic time
series from an epilepsy patient we have shown that strength
and direction of couplings can be detected, which extends
our previous findings on approximating a measure for phase
synchronization with CNNs �30�.

Our CNN-based estimates Ns
CNN and Na

CNN exhibited a
comparably larger statistical spread, in general. Nevertheless,
using Ns

CNN it was possible to distinguish regimes of low

coupling, weak synchronization, and full synchronization in
time series from model systems with similar dynamics and
from structurally different model systems. Na

CNN allowed us
to detect directional couplings. Applying our method to EEG
time series, we could show our CNNs to be capable of re-
producing long-term variations of the symmetric and the
asymmetric part of the nonlinear interdependence in continu-
ous, multiple-day EEG recordings from an epilepsy patient.
Since this was possible even without using a priori knowl-
edge as to the various states of the patients �e.g., awake,
asleep, or seizure activity� when optimizing our CNN, we
consider our approach as a possible basis for medical appli-
cations �e.g., a miniaturized analysis system for the predic-
tion of seizures�. We note though that our findings are, at
present, restricted to simulated or digital realizations of
CNNs. Nevertheless, polynomial-type hardware CNN’s
�VLSIs� are already available �57,58�, and even nonlinear
templates can well be approximated by piecewise linear
functions �59�. Moreover, with on-chip optimization strate-
gies �60� robust templates �derived from simulated or digital
CNNs� can be obtained, thereby minimizing the effect of
hardware tolerance.
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